
Chapter 2

Differential Geometry
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2.1 Curves

The curves we consider in this lecture can be regarded as a continuous function
mapping some one dimensional real interval into three dimensional space:

f : [a, b] → R3, a, b ∈ R and a < b

f(t) = (x(t), y(t), z(t))T

f(t) is a so called parametrization of the curve (see figure 2.1).
For the sake of simplicity we will oftentimes use two dimensional curves in

these lecture notes. Most of the important concepts, however, apply to both,
two and three dimensional curves.

2.1.1 Arc Length Parametrization

A specific curve c is geometrically uniquely defined by the set of points that lie
on it. This set of points can be described as

c = {p | ∃t ∈ [a, b] with p = f(t)} .

Observe, however, that there are infinitely many f(t) which describe the same
set c. So in essence, we have infinitely many parametrizations f of the curve we
can choose from. Now, we want to introduce a specific parametrization, the so
called arc length parametrization which has some favorable properties, namely:

7



8 CHAPTER 2. DIFFERENTIAL GEOMETRY

f(t0)

f(a)

f(b)

Figure 2.1: A sample curve in R2 with some arbitrary point f(t0)
highlighted.

• The distance of two points t0 and t1 in parameter space is the same as the
distance along the curve between the mapped points f(t0) and f(t1). Or,
more informally: The distance we travel in parameter space is the same
as the distance we travel along the curve. See figure 2.2.

• The first order derivative d/dt f is orthogonal to the second order deriva-
tive d2/dt2 f .

A curve f : [a, b] → R3 can be reparametrized by a continuous function
t(s) : [a�, b�] → [a, b] with

f̃ (s) := f(t(s))

such that f̃ ([a�, b�]) = f([a, b]) i.e. f̃ and f are representations of the same curve.
t is called a reparametrization of f .

f̃ can be derived using the chain rule:

d

ds
f̃ (s) =

d

dt
f(t(s)) ·

dt

ds
. (2.1)

The arc length of the curve can be determined with the integral over the
length of the derivative:

L =

� b

a

�
�
�
�
�

df(t)

dt

�
�
�
�
�
dt =

� b�

a�

�
�
�
�
�

df̃(s)

ds

�
�
�
�
�
ds

with t(a�) = a and t(b�) = b. Applying equation 2.1 we can substitute:
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A curve f̄ is arc length parametrized if
�
� d

ds f̄ (s)
�
� = 1. To yield an arc length

parametrized representation of an arbitrarily parametrized curve f we define
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The inverse function t(s) := s−1(t) is called the arc length parametrization of
f . Plugging t(s) into f we yield f̄ (s) = f(t(s)), the arc length parameterized
representation of f .
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Figure 2.2: An arc-length parametrized curve is length preserv-
ing, i.e. l = l�.

Proof. From equation 2.2 and the fundamental theorem of calculus follows:
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Because of the Inverse Function Theorem the following equation holds:
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Applying the last two equations to the arc-length parameterized curve function,
it turns out that the length of the derivative is indeed always equal to 1.
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From the fact that
�
�d/ds f̄(s)

�
� = 1 we can now immediately derive that

d/ds f̄ (s) ⊥ d2/ds2 f̄ (s):
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2.1.2 Frenet Frame

Now, a valuable tool for analyzing certain local properties of a curve, the Frenet
Frame, will be introduced. The Frenet Frame is a natural local coordinate
system defined at a specific point on the curve.

Assuming that the first three derivatives of a curve f(t) exist, the first terms
of its Taylor expansion are given by
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